The Pennsylvania State University

IGVC

Penn State Lion One 2009

This design report documents the design strategies used during the development Design Report
of Penn State’s entry to this year’s Intelligent Ground Vehicles Competition.
Specific emphasis has been laid on the innovations conceived by the team during

the iterative design process. Design Team
Abhinav Choudhary

Amit Patel

Drew Logan

Joan Singla

Kshitij Jerath
Madhu Soodhanan
Pol Morral

Steve Chaves

Faculty Advisor: Dr. Sean Brennan

The Pennsylvania State University

Table of Contents

O) { oo [V o1 { To T o H T TPV P TP U PO PP PRPPPORNE 1
N 0 115 =4 W o] o Yol X1 TP PUPRN 1
2.1 TEAM AFCRITECEUI . c..e ittt ettt st s bt ettt s he e sb et e st e e bt e s b e et e ea b e sabesbee eenbeeabesasesaeenees 2
T [14T 1V Y o] o PO PR PPN 2
LB VY (Yol TN D 1Y T o PPN 2
R | =Y N AT B LTy T o T = o L3 PPTPPPR 3
L = =T 0 or= Y ISV =] 0 =T o Y = =Tt o e o 1 oSSR 4
5.1 PoOWer and COMMUNICATIONS. ..c...iiiiiiiiiiiieette ettt s e e st e st e e sbb e e sanesbe e e st e sabeeeaneenanes 4
YA - TU1 Ll DI<Y Yot o o JF- [Lo I Sty o] o T USROS 4
TR T =T 10 N 5
6. SOTEWAIE DESIGN . ueiiiitiietie ittt ettt ettt ettt e s a e s ab e e s ae e e s bt e e bt e e bt e e bt e sa bt e e abeesateenae e e hee e ne nbeeeabeesbeenaneens 6
LT oY VY7 T < o] = o o o SR 6
6.2 SOTEWAIE QrChITECTUIE .eeeeiieeee ettt et b e et e st e st e e s beesateesabeesaeeenbeeen ean 7
6.3 SIMUIALION OO ..ttt e b e et e s bt e s ab e st e e s ae e e s bbeeabe e e bee e eesbeenanee s 7
6.4 GOAl POINT GENEIALION.....eiiiiiieitieeete ettt sttt et e s r e et s b e b e et eanesenesbeesneenesmeenae e 7
6.5 Path Planning AlZOItRMSot sttt b e e bt e s e sneeeanes 9
6.6 ViSiON @Nd 1M PrOCESSING .. .uiiiiiieiiieiiiee ettt e e ettt e e e e e et te e e e e e e eeeataeeeeeeeesaastaeeeeeseasstaeeeaaesenassrenaeas 10
6.7 OCCUPANCY IMAP GENEFATION .uvviiiiiiiiiiiiiiiiieiiieiererererererereeer ettt reeeeeretetetetetetetetetetetetetetetetetaeaeeteeeeeeeeeeeseeeeens 12
FUSE OCCUPANCY a0ttt s st e e st st e s r e e et e e e s re e reeneenneeneeenreennens 12
N =] 0 d N L L = T=4 =L (o] o PP P PPNt 13
2% R D 11y 1 g1 o 1V ¢=Yo [@eT0 0] o1V 1 ¥ =SSR 13
8. Safety, Reliability, DUrabiliTy........cueiieiiiiiciie e et e e et e e e e te e e e sabaeeeebae s esasaeeesataeeeensaeesennanas 14
9. PEITOMMANCE ..ttt ettt a e b ettt s at e bt e bt ettt ehe e bt et eateehe e bt et e eabeeht e eebeenbeeabesatesaeenes 15

Faculty Advisor Statement

I, Sean N. Brennan, certify that the design and development of Penn State Lion One has been significant and that
each student performing this work is a registered student. This work, as part of a graduate class project and as an
extracurricular project, represents a participation level equivalent to what would be awarded credit as a senior

design project.

Sean N. Brennan, Department of Mechanical Engineering, Pennsylvania State University

Introduction

1. Introduction

The design team from The Pennsylvania State University is proud to field the Penn State Lion One for the 2009
IGVC. The design effort was a continuation of a graduate-level Mechatronics course offered by the Department of

Mechanical and Nuclear Engineering. The design team consists entirely of graduate students from this department.

The Penn State Lion One is a significantly improved robot as compared to Penn State’s entry for the 2008 IGVC,
and has had several innovative upgrades including a complete overhaul of its software platform to a
MATLAB/Simulink-based architecture. Several other hardware and algorithm innovations have been applied to the

robot, improving its performance significantly over the previous year’s effort.

2. Design process

This is the second year that Penn State is participating in the IGVC, so we have focused this year on developing
processes for continuous improvement. Further, from lessons learned last year, we have established three core

design concepts as follows:

Use iteration to learn from mistakes quickly

To formalize an iterative design methodology, we used the V design approach shown in Figure 1. We analyzed the
requirements and restrictions for the project to create a set of desired design objectives. Given these design
objectives we decomposed them into subsystems and further to algorithms. The remainder of the report provides

details of each decomposition and integration process.

DESIGN CONCEPT FINAL PROJECT

IGVC Performance verification System
requirements validation
Integration System verification :
design
. Testi
H A(\jlgorlthdm/. % Individual testing
Decomposition araware cesigl Integration and
and definition Software/Hardware recompositon
development

Figure 1: The "V" Systems Engineering Model

Prepare for competition by using competition

For each algorithm, we divided the team in at least two groups that compete to develop the best solution. This
way, performance becomes a first priority, multiple team members learn and hence can scrutinize each other’s
code, and team members become proud of their code. After each competition, we compared all solutions so that

the best methods are shared.

Innovations

Fast algorithms are better than fast execution

IGVC robot software will always be a prototype, and last year’s entry taught us that debugging bad algorithms to
create outstanding code has more performance payoff than using complied language or fast processors on
otherwise bad code. MATLAB/Simulink is a high level language that supports this design philosophy, and it is OS,
computer and version agnostic. For this reason it is used throughout the engineering curriculum to the point that

PSU no longer teaches C or C++ to most engineering students.

2.1 Team Architecture
Because of our competition design principles, each team member is at least an expert on two groups shown in the

Figure 2. Logs have been kept of all design activity, and the team has devoted 1020 hours to date towards the
development of Penn State Lion One.

System architect / Integration

1
| | || 1
LIDAR GPS / DNS

Figure 2: Team Architecture
3. Innovations
The design team has introduced numerous innovations into the robot for the 2009 IGVC. The foremost among
them is the use of a MATLAB- and Simulink-based software architecture. This scheme allows for a transparent
code development strategy. Further, the use of real-time control software (QuaRC) allows real-time gain tuning for
our control algorithms. Several innovations have been introduced on the hardware side, such as a new modular
design of the robot, an internal battery recharge system, the ability of the robot to pivot around any arbitrary

point, and an on-board diagnostic scheme for detecting ground faults.

The software component of the robot also includes several innovations such as a fully adaptive image processing
algorithm that adapts to lighting conditions, a boundary-based Veroni diagram goal point generation scheme for
path planning, and on-the-fly map archiving and retrieving for automated map building. Further, data exchange
operations now are performed with TCP/IP instead of serial. These innovations are emphasized in the report

wherever they occur.

4. Vehicle Design

Several hardware lessons were learned from last year’s competition: our robot was too slow, the drive chain and
sprockets were unreliable, it was too difficult to recharge quickly and access equipment inside, it suffered from

electrical faults, and was even unable to climb the ramp due to insufficient friction.

Starting from last year’s design, we have followed an iterative design process to
reach our present design, dealing with all previously known hardware problems and

new ones found on the way.

4.1 Iterative Design Steps

Last year’s robot was “version 1”, the first of many iterations. It is a track-driven,
two-decked platform. The lower platform contains two 0.5 hp DC motors and four
batteries, providing two separate 24V sources, one used by the motion system, the
other by the instrumentation equipment. The upper deck holds all the electronics.
The access to the lower deck is through a clam-shelled opening system, which
proved to be impractical. We encountered problems with derailed tracks from the
very first run and, by the end of the competition, we realized that we had a very

slow machine - an issue we needed to solve for the following editions.

For version 2 we focused on solving the problems of insufficient power and traction.
We increased the motor voltage to 36V, we added guide sprockets wheels to the
track system, and added a rubber overlay to the treads. With these changes, the
robot was still barely fast enough. Even worse, the guide sprockets significantly

increased wear on the tracks.

Version 3 was used to test a new set of drive motors. These solved all the previous
power issues, but further increased the rate of damage to our track system.
Recognizing that design of a high-speed tank-drive UGV is a tradeoff between
reliability and power consumption, and that reliability is always difficult to obtain in
a prototype robot, we decided to migrate to a simpler and more effective wheeled

robot.

Version 4, our final version, is a four motor direct-drive wheeled vehicle. Although
this approach has more limited traction and is more expensive, it has proven to be
the most efficient and robust. Further, we have designed the robot to have
independent control of the front and rear axles. This allows guidance algorithms to
choose the pivot point on a zero radius turn, a capability very convenient for a

competition of this kind.

Vehicle Design

V.1 <

2008IGVC

Upper deck:
instrumentation

Clam-shieid
opening

1

Lower deck:
2x0,5hp motors
Batteries 24V

V.2

Tracks covered
with tires

1

36V battery set

Wheel sprockets

V.3

HER O
O

2x1,7hp motors,
modified structure

Completely
new
structure

[1

0 0(0

Two motaor controllers, each motor
independent, allowing pivoting

paint selection

Electrical Systems and Electronics

The robot platform is modular and allows quick change of equipment and batteries, enabling quick
deployment

An internal recharge system helps avoid the need to open and unplug the robot and dealing with plugs
every time the robot needs to recharge its batteries.

5. Electrical Systems and Electronics

5.1 Power and communications

Several measures have been taken to ensure efficient power distribution while minimizing interference. The drive
train batteries are contained in the lower deck and are physically and electrically separated from the electronics

that are located on the upper deck. Two 12V 18Ah

4 IEEEFEEFEEFEE N EEENFEEEEEEEEEESEY

lead-acid batteries in series are provided for the CEEEEEEEW. «EEEEN.

“Ill 2

electronics, and two more are present for the

of B (W B QE A W e

motors. Appropriate fuses have been provided for

ol M W N

the batteries.

Figure 4 represents the data connectivity diagram,

4
[]
| |
]
[|
L]
v
L AR RN R A N N N R

showing all major robot components. As an
innovation, Arduino PICs have been installed as

interfaces to all low-level hardware. Each

YFEENEEEEENEENENENEENDNg,

subsystem is thus linked to all others via Ethernet,

Roboieqgs ==
providing high data rates as well is isolating ‘sssasssssssssssssssssmsmanad

electrical ground between all devices. The Arduino Figure 3: Power supply diagram
used for motor control also can read signals from a RC receiver when the RC mode is selected, allowing us to drive

the robot safely when autonomous mode is not desired.

5.2 Fault Detection and E-stop

In order to improve troubleshooting capabilities and enhance reliability, an on-board fault detection system has
been implemented to track any electrical or communication failures. For the five main subsystems of the robot, an
Arduino PIC monitors continuity between chassis and both high voltage and ground. Faults are indicated directly
from the PIC using a LED array and also sent to a supervisory computer via Ethernet. Further, both on-board and
wireless emergency stops are also built into the robot. The on-board emergency stop is located in an elevated
location at the rear of the robot, per the competition rules; the wireless E-stop has a range of 300 ft, a distance we

have verified several times.

An on-board fault detection system allows us to monitor robot health on the supervisor terminal.

5.3 Sensors

Electrical Systems and Electronics

Figure 4: Connectivity Diagram

The sensor systems used on the robot are described briefly in Table 1.

Table 1: Description of sensors

Sensor

Description

Camera - Point Grey
Research Firefly MV

SICK LMS

NovAtel DL4 plus
OEM4 dual frequency
GPS receiver

Honeywell HG 1700
Military tactical Grade
IMU

US Digital s2 2048 Optical
Encoder

Resolution 720 x 480
60 frames per second.
Range — 30 meters

Scan rate —37.5 Hz
0.5 degree resolution

Dual frequency receiver
Position accuracy of 2 centimeters

Ring-laser gyro with laser-calibrated
MEMS accelerometer

Drift bias — 10 deg/hr a
Acceleration bias — 3 milli-g X =l

Velocity and sampling rate — 600 Hz

2048 counts per revolution
5V supply (from Arduino board)

Software Design _

6. Software Design

6.1 Software platform

One of our guiding design principles is that code transparency is critical. To enforce this, a unique and innovative
software architecture based completely on MATLAB and Simulink was developed. Functions written in the native
MATLAB language handle almost all of the necessary computations for the robot’s path planning, map generation,
and occupancy structure. Sensor data streaming and robot motion control are accomplished through Simulink
block diagrams, with the help of a program called QuaRC. QuaRC is a real-time control software toolbox
developed by Quanser Inc that directly compiles Simulink diagrams to code that can be executed and monitored in
real-time. This type of architecture makes the hardware-software interfaces very streamlined, robust, and reliable.
Further the MATLAB-based software architecture allows for powerful tools like MATLAB’s Profiler to be used,

where the robot’s entire code can be analyzed instantly for computation time and function calls in mere seconds.

\ The software platform is completely based on MATLAB and Simulink, with real time control performed
by QuaRC. This architecture enhances the code’s transparency and reusability.

Further, the real-time control capabilities provided by QuaRC allow us to tune the control gains in real-time and
monitor the performance of the robot as the gains are changed. This allows a quick design-test-verify iteration,
speeding up the robot deployment schedule. Figure 5 shows one of our test runs where the control gains for

orienting a robot according to a specific yaw command were tuned in real-time.

PID Efforts for Yaw Angle v Time

2#0: Reference Yaw —— PID Efforts

Yaw Angle (Degre

() 610 620 630 640 650 B60 B70 6RO 690 700 710 720 730 740 750
Time (seconds)

_3 @

Kp = 0.75 Kp = 0.75
Ki =075 Ki =075
Kd =02 Kd = 0.75

Figure 5: Real-time gain tuning of robot during a test run for orientation control

QuaRcC allows a real-time gain tuning scheme that allows for extremely quick design-test-verify iterations
allowing a speedy deployment of the robot.

Software Design

6.2 Software architecture

The software architecture is indicated in Figure 6. The remaining subsections of software design in the report
follow the same general order as shown in the figure. Path planning is discussed in 6.4 and 6.5, followed by a
discussion about cameras and image processing in section 6.6. Occupancy maps are discussed in subsection 6.7

about sensor fusion.

Global map

Goal desired actual

point path position
Map _— Path g Votion Eemmmmmrd Sensors

Occupanc
Local map Sensor data

Figure 6: Software Architecture

Monitoring GUI

6.3 Simulation tool

One of the major improvements this year is the development of a powerful GUI that allows us create simulated

environments (objects and lines) to first virtually test the algorithms in different conditions before testing in a

physical rObOt environment.) Team_Cube_d_pssignment_3 =loix|

Map Text Map Imag Select Type of Object

Import Map | Export Map | ‘ - Obstacles . Lines - Rt

(L Ly Erase
Load Image| Clear Image| A =BaSnCY DT 4 | . Sky . Sand | Traps
background image:

Select Brush Si

’7 Small - Wedium . Learge

Clear Map

’7 Load Map | Save Map

As shown in Figure 7, the robot’s

sensors, like the camera or range

finder, are also simulated and

Map Rotati

’7H.uhl.ionl’uinl| Set Angle | Rotate Map |‘
follow closely the real behavior of e
Ratio: 0s

these sensors. This simplifies Srootivess. [52| Gonerate Random Map

Useourrent map
as seed map

debugging because we can control

— Goal List

Place Goal I’oirlll Import Goal Lill.l Export Goal LiIll

levels of sensor noise and faults.

Further, with this tool, multiple

E
Sooam
@

developers can be testing the

robot at the same time in different T B T Y S oK | Undo

Reset | Cancel

contexts. Figure 7: GUI with the simulation tool

6.4 Goal Point Generation

The path planning strategy for the Penn State Lion One has been divided into two segments: the first is a Goal
Point Generator, which decides the order in which the given waypoints should be traversed; the second is a Path
Planner, which decides which path to take to the next waypoint. Two Goal Point generators have been developed,

one for the Navigation Challenge, and another for the Autonomous Challenge.

Software Design _

The Goal Point Generator for the Navigation Challenge decides the order in which the given GPS waypoints should
be visited. This problem is essentially the celebrated Traveling Salesman Problem. Three techniques that were
analyzed, coded and tested were a heuristic technique (polar sorting around centroid), a modified Monte-Carlo
method, and a Genetic Algorithm. The Heuristic Polar Sorting technique was found to be faster than any other
algorithm by an order of magnitude, while giving near-optimal routes for small number of waypoints. The

technique is explained pictorially in Figure 8.

@] 4
©
o o .I - .~
.] Nl
" Centroid -7 x
° o X
@Start Point © G O‘ilar‘s:t//
o & /
(a) Randomly distributed waypoints (b) Centroid Calculation (c) Polar Sorting

Figure 8: Heuristic Polar Sorting Algorithm yields optimal route for small number of waypoints

\ The Heuristic Polar Sorting algorithm is an order of magnitude faster than other global path planners.
' Further, it only runs once and has a deterministic computation time.

The Autonomous Challenge requires that the robot explore an unknown environment. Thus, there is difficulty in
deciding which location to move to next. The classical approach is wall following, but our simulations of this

algorithm showed it will fail in common circumstances.

To decide the next location, or ‘goal point’, we then investigated seeking points that lie at the intersections of
unknown, open and obstacle spaces, areas which we named “triple points”. There are only a few triple points in
any occupancy map, thus monitoring these points is quite fast. Simulations showed that wall-following is a sub-

class of algorithms that seek such triple-points.

Unexplored /
Out of court
zones

Border
points

Triple —
points

distances to
closest TP

(a) Select border points inside (b) Select Triple Points (TP) (c) Calculate distance of border points
explorable zone to the closest TP

Figure 9: Goal Point Generator algorithm for the Autonomous Challenge

Software Design _

For the 2009 IGVC, another triple-point algorithm was designed that was motivated by 2D Veroni diagrams, and
which we refer to as Veroni 1D. Essentially, this algorithm seeks to move to the middle of the largest open,
unexplored area between triple points on the 1D boundary. The computation process is explained in Figure 9, and

is not only robust, but exceptionally fast to compute.

6.5 Path Planning Algorithms

Any robot traversing the course should be able to plan a path under conditions shown in Figure 10. A summary of
the performance of different commonly used path-planning algorithms is provided in Table 2. In the table, under
processing speed, N indicates the distance between the goal and start point, whereas “t” indicates calculations
that must be performed at each time interval. There is clearly a tradeoff between the speed of the algorithm, and

the complexity of the planned path.

Start Start Start

° D)

Goal Goal Goal
Condition 1 — Straight line Condition 2 — Move away from obstacle Condition 3 — Cul dé sac

Figure 10: Path Planning Conditions

Table 2: Capabilities of Path Planners

Algorithm 1 Conition Processing Speed
Straight Line v fails fails O(N)
Potential Field v v fails O(N’) + O(N).t
A* Limited 7 7 7 O(N’)t
D* 7 7 7 O(N)t

Our path planner switches between all four algorithms to exploit their benefits and still minimize processing time.

[B, SON OF ERS
IPATH :OM "Iﬂlbk 1.\ AT FLAI“N i bl TIME COMPARIZON OF PATH PLANNERS

10k Straight Line
Potentizl Field
A® Limited

0sf q

04F q
-Stralght Line

I Fotential Field
03t I - limited 1
[y Algorithm

Time (sec)

02F q

01p B

Path Planning Algotithrs

Figure 11: Comparison of Path Planning Algorithms

Software Design

To achieve this type of dynamic scheduling, the simplest path planners are attempted first, and each algorithm
self-monitors progress. In the case that a planner is unsuccessful, a supervisory algorithm switches to a more
complex path planning approach and “milestone” conditions are calculated that allow switchover later back to a

simpler algorithm.

6.6 Vision and Image Processing

One of the major problems faced during last year’s competition was inadaptability to adapt to changing lighting
conditions such extreme sun versus overcast conditions. Last year’s algorithm was a simple intensity-based static
thresholding algorithm and did not perform well on the course. Consequently, the main focus of the image
processing effort this year was on introducing adaptability into the algorithm. To test the various new algorithms,
we created a GUI (Figure 12) for manually tagging images to represent the ground truth. Last year’s algorithm was

tested on this set of tagged images, and was found to fail on many occasions.

[y —————— Y e —)
Sy Tt Sy g it P o gt Sy Tt Sy g it P o gt Sy Tt Sy g it P o gt
. | | I | .-—.-..... | - e e N TN .-—-..... | - L e e e | .-—-..... | -
S T e T
— - — - e et e R e
ey ey ﬁ ey
RSSl HESERll SRl HS SRl s] SRl HS SRl s
Baratirs My L et Sy e e | et Sy e e
] n | (-]
| | e) 1 19 s |
:""_:::' S| S A | :-._:_' S| S A | A :""_:::' S| S A |
. " ") . "
— & — & 5 — &
3 = s 3 = s 7 3 = s
O T S | Wl | Bl el O T S | Wl | Bl el e S S e i o e el | el el
(a) Image loaded into GUI (b) Lines and obstacles tagged in GUI (c) Tagged Image

Figure 12: MATLAB GUI used to generate tagged images for testing purposes

For IGVC 2009, three different algorithms with varying degrees of adaptability were considered:

a) A simple intensity-based algorithm on the RGB color space. Similar to last year’s algorithm, except that
that thresholds are intensity-scheduled, i.e. change with image intensity.

b) An adaptive threshold algorithm based on the R’GlI color space. By trial and error on images saved at
IGVC 2008, it was found that the R°Gl color space yields a good color space basis. A new threshold is
calculated for each image using averaging, making this algorithm adaptive.

c) A fully adaptive algorithm based on use of Principal Component Analysis (PCA) and K-means clustering.
The PCA delivers the optimal color space (the principal component) that best partitions grass and non-

grass pixels. We then use K-means to quickly calculate thresholds.

The three algorithms were compared against each other for speed and accuracy. It was found that PCA with K-

means clustering performs the best in terms of accuracy, and does so at an acceptable speed.
Principal Component Analysis

As lighting and weather conditions change, the color space that helps best distinguish between white lines and
grass also changes. Such a color space can be determined on-the-fly, by using only the principal component of the

image, i.e. the eigenvector pointing in the direction of maximum change in the image information. As can be seen

Software Design

from Figure 13, the image data appears scattered. However, by proper orientation, it can be seen that most of the

data is tightly clustered along the principal component axis (pixels.

Figure 14). The advantages of performing PCA include reduced processing time (by reduction of data
dimensionality), adaptability with changing lighting conditions, and the option of extension to higher dimensions

(using kernel functions) for higher accuracy.

Blue®

Green*

Red® Green® Red®

Figure 13: The image data as seen orthogonal to the Figure 14: The image data as seen along the direction of
principal eigenvector (PE). This direction provides the the PE (circle). This view provides minimum separation of
largest separation of line and grass pixels. line and grass pixels.

K-means clustering

K-means clustering is performed on 1-D data to separate lines from grass. K-means minimizes the sum of distances

across all points by putting them into appropriate clusters. Figure 15 shows the clustering for grass and lines.

400 T T
[]white Lines
200 B Grass
g 200 + _
i
100 - -
I 0 e e 0 e e

0o
-150 -100 -50 0 50 100 150 200 250
Principal component

Figure 15: Clustering on the one-dimensional principal component

After the data points have been clustered in one dimension, the original image is reconstituted and a projective
transformation is performed on the image to obtain a birds-eye view (Figure 16). The birds-eye view is then
converted into an occupancy map, and is then fused with a LIDAR occupancy map to generate the world

representation for the robot.

The image processing algorithm is adaptive, and can modify the color space and thresholds on-the-fly,
based on the lighting conditions and weather.

Software Design

S

age 500 600 (b) Processed image with extracted

600

(c) Projective transformation for bird’s

(a) Originalim
lines eye view for occupancy map
Figure 16: Image processing — From original image to bird’s eye view

6.7 Occupancy Map Generation

Mapping the obstacles and lines

LIDAR data occupancy map
The data that comes from the LIDAR and camera olo IR o
sensors is processed to generate individual T ojofl1|0|0|0f0|0O
occupancy maps (obstacles or lines) of 1’s ij1jrjojojojajo
. 1(o|(o|o|ofof1]|1
(objects) and 0’s (clear spaces). ,
—7 > outliers
som ™ 1(o|(o|o|ofofo]|oO
80m
om = 1(o|(o|o|of2|o0]|0

Figure 17: Mapping LIDAR to occupancy

Using the GPS position of the robot, the occupancy
Objects map . o)
map is merged with its corresponding map (obstacles

Sensor Occupancy or lines) using an IR filter to remove noise. Each value

LIDAR data map is averaged according to previous readings and a user-
defined threshold depending on the speed of the

vehicle, level of confidence of the map, and sensor

noise. The result is quite similar to a spatial Kalman

filter.

Figure 18: Converting occupancy to a global map

Fuse occupancy data
Once the obstacles and lines maps are updated, the information is merged in what we called the “fused map”. This

map will be used by the path planner algorithm to define a route to the goal point. Special attention has been put

on filtering white obstacles appearing in the camera to dose not count as obstacles in the fused map.

Systems Integration

/[
9%
\

-
=

,i||‘|

Y 4

N
L]

]
X

|
|

f.
.
]

A‘”

-
a9
A %
Obstacles from LIDAR b ¥

ines from Camera Fused map

Figure 19: Data fusion process

7. Systems Integration

7.1 Distributed Computing

The innovative software architecture for the robot is built around a foundation of distributed computing and
modularized systems. Using UDP commands, suitably modified from MATLAB’s TCP/IP toolbox, all functions
necessary for the robot are allocated to specific computers depending on their computational and inter-function
communication loads. With this method, critical calculations and algorithms for the robot were optimized to run

in parallel.

The concept behind distributed computing is quite simple. Each function for the robot is designated as a
“foreground” function, with an associated “background” server that runs hidden beneath the main function.
Parameters for each background server are specified during robot setup. These parameters govern the UDP
communication to and from the server, the variables passed through the server, and their destinations. These
background servers can be implemented on computers running MATLAB scripts or computers running Simulink
diagrams with QuaRC real-time control. The foreground functions then pass variables to their respective
background servers via variable flags; when a variable has been updated in the foreground, the background

recognizes this update and passes the new variable to other functions distributed among different computers.

Optimization of the processing speed for various functions running on the robot can be done by allocating the
function or diagram to any computer which has the capabilities of a background server (Error! Reference source
not found. 20). For example, one computer can run an image processing algorithm while another computer plans
the robot’s path, with the background servers handling any communication between these two processors. Any
number of computers can be declared with background servers, so this type of system integration is versatile,
powerful, and scalable. As an added benefit, this method of distributed computing allows for a “supervisor”
computer — a computer that logs the robot’s performance real-time, monitoring critical information like position

on a map, speed, power usage, etc.

Safety, Reliability, Durability

A
A 0.16
0.20 014
0.18 l V 0.12 | | Yol
= o 2 .10 g A 4
E . m} {J"‘ E 0.08
F i " t|li
0.14 | I | 0.06
i ‘
||i!hiﬁf| ‘ | : M I \W'Uq I J 0.04
0.12 I'-. | LI i lh ik "
l».ﬂ],.] Ml]*w b ﬁuﬂl'f ’F‘ i’£ H| M "I ‘wl‘ 0.02
0.10 'h
- 0.00 H i L L L -
100 200 300 400 500 600 700 800 100 200 300 400 500 600
Iteration Number Iteration Number
(a) Simulation using only one computer — 10 to 20 Hz (b) Simulation using two computers — all processes

operate at 10 Hz reliably

Figure 20: With robust communication and distributed computing, the robot can perform the same functions in less time

8. Safety, Reliability, Durability

In addition to the fault detection system mentioned earlier, the construction of the IGVC robot incorporates
proper engineering practices whenever possible to make the platform both safe and reliable. Per the competition
requirements, the robot is equipped with a wired and wireless emergency stop (e-stop). In addition to these two e-
stops, two Hela switches are in place to as a physical break the batteries powering the motors and the motor
amplifier. Other than the wheels, there are no exposed moving parts within the robot, thus preventing injuries

while servicing.

Each sensor system (laser scanner, GPS/IMU, encoder and vision) is isolated both physically and electrically. A
physical mount is made for each sensor system which can be quickly unbolted from the frame as needed for rapid
debugging, and lexan plates isolate each subsystem from through-chassis electrical faults. The only electric
connection between each module and the rest of the robot is for power and a single Ethernet. Power for each
system is regulated from 24V within the module. The sensors are also powered by a different source than the
drivetrain. To avoid human error, there are different sized connectors are each end of the motors and motor

amplifier, and between different power architectures.

Careful attention was paid during the design stage to make sure that all systems of the robot provided for safe and
reliable functionality. One of the most important safety features is the ability to stop the robot immediately, either
remotely or locally. The robot is equipped with a large emergency stop button placed prominently on the back. It is
also equipped with a remote that has a line of sight range of 300 feet. These features provide enough flexibility to

stop the robot in case of any emergency.

Reliability was a key factor in choosing hardware for the robot. Commercially available components were chosen

to perform the required functions on the robot, where possible, to increase expected reliability and durability.

Performance

Employing such equipment, also provides recourse in the event of an equipment failure: most hardware

components on the robot can be replaced easily through retail channels.

9. Performance

Ramp Climbing Capability: The ability of a robot platform to climb up a ramp is a function of the robot’s available
torque, center of gravity, and the friction between the robot’s wheels and the contact surface. All three factors
were measured. A model was developed to predict the robot’s climbing capabilities based upon a quasi-static force
balance analysis of a very slowly moving robot. The model predicts the robot can traverse a ramp with a 46.8°
while the actual incline the platform can traverse is 30°. The robot’s ability to traverse a steeper slope is limited by

friction in both the model and during testing.

Maximum Speed: The maximum velocity of a robot is computed directly from the motor speed curve, grearbox
ratio and wheel diameter. Using a National Power Chair (NPC) motors with a 20:1 gear ratio and 13 inch wheels,
the model accurately predicts that the robot can achieve a maximum velocity of 8.55 mph. Testing confirmed this

speed this speed to within 1 mph.

Cruising Distance: Cruising distance is defined as the distance a robot can travel on flat terrain without recharging
its batteries. This distance (Ax) is a function of the energy available (Eav.ibe), platform’s velocity (V), and the power
available (Pavaiabe) from its batteries as seen in the first equation below.

AX — EAvailablev E C

P e VIVIS g (F-TRY

The actual battery energy available, denoted as Eayaiabe, in the middle equation describes the energy available in
the battery when current is being drawn more quickly than the specified rate. Batteries are computed as a function
of motor amplifier voltage (V’), the theoretical capacity of the battery (C), and the current draw rate (l). The
Peukert Number, denoted as n, is an experimental constant derived for each battery type to describe the effects of
the battery discharge rate. Pavaiiabie is defined as the power required to overcome all of the resistive forces (ZR) at a
specified velocity. Payaiable is @ value which is computed using both experimental and theoretical data. This model
predicts a cruising distance of 6.6km and battery life of 1.8 hours. We tested the robot experimentally and found a
maximum cruising distance of 5.3km and battery life of 1.6 hours, making the model accurate within a percentage

error of 25%.

Goal-point accuracy: The accuracy of reaching a specified goal point is dependent on the accuracy of the DGPS
system, the tracking accuracy of motion controller, and the accuracy of the path-planning algorithm, errors which
are 0.5 meters, 0.1 meters, and 0.1 meters respectively. The measured accuracy of the robot is always measured

within 1 meter, which agrees with the cumulative errors noted above.

